Abstract

alpha(1)-acid glycoprotein (AGP) is an acute-phase protein that contributes to inflammation processes. The role of AGP in platelet activation and thrombosis is, however, largely unknown. Therefore, we thoroughly investigated the effects of AGP on human platelets. Platelets were isolated from healthy volunteers and subsequently exposed to AGP. Platelet responses were monitored as change in light transmission, intracellular calcium concentration, light microscopy and protein phosphorylation by Western blot. We found that AGP induced platelet shape change independently of a second release of adenine nucleotides or thromboxane A(2), and that effect was abolished by endothelium-derived platelet inhibitors such as nitric oxide (NO) and adenosine. Furthermore, AGP triggered a minor calcium response and a pronounced Rho/Rho-kinase-dependent increase in Thr696 phosphorylation of myosin phosphatase target subunit 1 (MYPT1). Moreover, the Rho/Rho-kinase inhibitor Y-27632 significantly decreased the AGP-induced shape change. The results also showed that the AGP-elicited shape change was antagonised by pretreatment with low doses of collagen and thrombospondin-1. Our results describe a novel mechanism by which AGP stimulates platelet shape change via activation of the Rho/Rho-kinase signalling pathway. Physiological important platelet inhibitors, such as NO, completely counterbalance the effect of AGP. Hence, the present study indicates that AGP directly contributes to platelet activation, which in turn might have an impact in physiological haemostasis and/or pathological thrombosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call