Abstract
Abstract Let R be a commutative ring with non-zero identity and M be a unitary R-module. The goal of this paper is to extend the concept of 1-absorbing primary ideals to 1-absorbing primary submodules. A proper submodule N of M is said to be a 1-absorbing primary submodule if whenever non-unit elements a, b ∈ R and m ∈ M with abm ∈ N, then either ab ∈ (N : RM) or m ∈ M − rad(N). Various properties and chacterizations of this class of submodules are considered. Moreover, 1-absorbing primary avoidance theorem is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Analele Universitatii "Ovidius" Constanta - Seria Matematica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.