Abstract
[1,8]-Naphthyridine derivatives have been reported to possess important biological activities and may serve as attractive pharmacophores in the drug discovery process. [1,8]-Naphthyridine derivatives (1a-1l) were evaluated for inhibitory potential for isozymes of carbonic anhydrase (CA) and alkaline phosphatase (ALP). CAs have been reported to carry out reversible hydration of CO2 into HCO3−, secretion of electrolytes, acid–base regulation, bone resorption, calcification, and biosynthetic reactions. Whereas ALPs hydrolyze monophosphate esters with the release of inorganic phosphate and play an important role in bone mineralization. Both enzymes have been found to be over-expressed and raised functional activities in patients suffering from rheumatoid arthritis. The discovery of dual inhibitors of these enzymes may provide a synergistic effect to cure bone disorders such as rheumatoid arthritis and ankylosing spondylitis. Among the test compounds, the most potent inhibitors for CA-II, CA-IX, and CA-XII were 1e, 1g, and 1a with IC50 values of 0.44 ± 0.19, 0.11 ± 0.03 and 0.32 ± 0.07 µM, respectively. [1,8]-Naphthyridine derivatives (1a–1l) were approximately 4 folds more potent than standard CA inhibitor acetazolamide. While in the case of ALPs, the most potent compounds for b-TNAP and c-IAP were 1b and 1e with IC50 values of 0.122 ± 0.06 and 0.107 ± 0.02 µM, respectively. Thus, synthesized derivatives proved to be 100 to 800 times more potent as compared to standard inhibitors of b-TNAP and c-IAP (Levamisole and L-phenyl alanine, respectively). In addition, selectivity and dual inhibition of [1,8]-Naphthyridine derivatives confer precedence over known inhibitors. Molecular docking and molecular simulation studies were also conducted in the present studies to define the type of interactions between potential inhibitors and enzyme active sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.