Abstract

The new Lewis acid-base adducts of general formula X(nad)B←NC5H4-C5H4N→B(nad)X [nad = 1,8-O2C10H6, X = C6H5 (2c), 3,4,5-F3-C6H2 (2d)] were synthesized in high yields via reactions of 1,8-dihydroxy naphthalene [nadH2] and 4,4'-bipyridine with the aryl boronic acids C6H5B(OH)2 and 3,4,5-F3-C6H2B(OH)2, respectively, and structurally characterized by multi-nuclear NMR spectroscopy and SCXRD. Self-assembled H-shaped Lewis acid-base adduct 2d proved to be effective in forming thermally stable host-guest complexes, 2d × solvent, with aromatic hydrocarbon solvents such as benzene, toluene, mesitylene, aniline, and m-, p-, and o-xylene. Crystallographic analysis of these solvent adducts revealed host-guest interactions to primarily occur via π···π contacts between the 4,4'-bipyridyl linker and the aromatic solvents, resulting in the formation of 1:1 and 1:2 host-guest complexes. Thermogravimetric analysis of the isolated complexes 2d × solvent revealed their high thermal stability with peak temperatures associated with the loss of solvent ranging from 122 to 147 °C. 2d, when self-assembled in an equimolar mixture of m-, p-, and o-xylene (1:1:1), preferentially binds to o-xylene. Collectively, these results demonstrate the ability of 1,8-dihydroxy naphthalene to serve as an effective building block in the selective self-assembly to supramolecular aggregates through dative covalent N→B bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call