Abstract
An improved 1 × 4 coupler based on all solid multi-core photonic crystal fiber is proposed and analyzed. The expressions to calculate the coupling length and the coupling efficiency are deduced based on the coupled-mode equations firstly. Then a full-vector finite element method (FEM) is used to calculate the coupling length and the coupling efficiency. Next, the propagation characteristics and the performances of the coupler are analyzed through using a full vector beam propagation method (BPM). Research shows that the results derived by FEM agree with that by BPM. The coupling length of the coupler is 4.1 mm at λ = 1.55 μm. A maximum coupling efficiency of 24.96% can be obtained. The coupling ratio is more than 22.5% over a wavelength range of 100 nm. The polarization-dependent loss at λ = 1.55 μm is equal to 0.73 dB. Finally, the influences of the micro-variation of structure parameters and the material refractive index on the working performances of the coupler are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.