Abstract

The title compound, [Fe2(C5H5)2(C40H22O2)] or 1,4-(FcPh)2Aq [where FcPh is 2-(4-ferrocenylphenyl)ethynyl and Aq is anthraquinone], was synthesized in an attempt to obtain a new solvent-incorporating porous material with a large void space. Thermodynamic data for 1,4-(FcPh)2Aq show a phase transition at approximately 430 K. The crystal structure of solvent-free 1,4-(FcPh)2Aq was determined at temperatures of 90, 300 and 500 K using synchrotron powder diffraction data. A direct-space method using a genetic algorithm was employed for structure solution. Charge densities calculated from observed structure factors by the maximum entropy method were employed for model improvement. The final models were obtained through multistage Rietveld refinements. In both phases, the structures of which differ only subtly, the planar Aq fragments are stacked alternately in opposite orientations, forming a one-dimensional column. The FcPh arms lie between the stacks and fill the remaining space, leaving no voids. C-H...π interactions between the Ph and Fc fragments mediate crystal packing and stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.