Abstract

Mode locking of a 1.34μm vertical external cavity surface emitting laser is demonstrated using a GaSb-based semiconductor saturable absorber mirror (SESAM). The SESAM includes six AlGaSb quantum wells (QWs) with an absorption edge at ∼1.37 μm. The proposed approach has two key benefits: the QWs can be grown lattice matched, and only a small number of Bragg reflector layers is required to provide high reflectivity. Pump-probe measurements also reveal that the AlGaSb/GaSb structure exhibits an intrinsically fast absorption recovery on a picosecond timescale. The mode-locked laser pulse train had a fundamental repetition rate of 1.03GHz, a pulse duration of ∼5 ps, and a peak power of ∼1.67 W. The demonstration paves the way for exploiting GaSb-based SESAMs for mode locking in the 1.3-2μm wavelength range, which is not sufficiently addressed by GaAs and InP material systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.