Abstract

A reverse-blocking AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (RB-MISHEMT) is proposed and fabricated. Compared with the conventional MISHEMT with ohmic drain, the proposed device features a hybrid Schottky-ohmic drain with a low work function Tungsten (W), based on which the state-of-the-art ultralow turn-on voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V} _{\mathrm{ on}}$ </tex-math></inline-formula> ) of 0.25 V could be realized without degradation in on-state characteristics. In addition, the fabricated RB-MISHEMT exhibits the excellent reverse blocking voltage of −1332 V (at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V} _{\mathrm{ GS}}= 0$ </tex-math></inline-formula> V) and forward blocking voltage of 1315 V (at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V} _{\mathrm{ GS}} = -15$ </tex-math></inline-formula> V) with a specific on-resistance ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R} _{\mathrm{ on,sp}}$ </tex-math></inline-formula> ) of 3.5 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{m}\Omega $ </tex-math></inline-formula> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , leading in the highest power figure-of-merit (FOM) of > 494 MW/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The good thermal stability could also be observed in fabricated RB-MISHEMT. The corresponding operation mechanism of RB-MISHEMT are also revealed by Silvaco ATLAS simulations. These results demonstrate the great potential in power electronics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call