Abstract

The analysis and simulation result of a 1 × 3 beam splitter in a two-dimensional square-lattice photonic crystal is presented in this paper, where the light is self-collimated as dictated by the self-collimation effect. The frequency and the direction of propagation of the self-collimated beam are obtained by the equal-frequency contours (EFCs) plot which is calculated by plane wave expansion method. Then a line defect is introduced by simultaneously varying the radii and the dielectric constant of the rods along the proper direction, the self-collimated beam propagation in such structure is simulated by the two-dimensional finite-difference time-domain (2D FDTD) method with perfectly matched layer absorbing boundary conditions. The simulation results show that the self-collimated beam can be split into three beams. With the same principle, a 1 × 7 beam splitter is realized by introducing different line defects along (X direction. Such devices can greatly enhance photonic crystals for usage in high-density optical integrated circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call