Abstract
The quinol oxidation site QD in E. coli respiratory nitrate reductase A (EcNarGHI) reacts with the three isoprenoid quinones naturally synthesized by the bacterium, i.e. ubiquinones (UQ), menaquinones (MK) and demethylmenaquinones (DMK). The binding mode of the demethylmenasemiquinone (DMSK) intermediate to the EcNarGHI QD quinol oxidation site is analyzed in detail using 1,2H hyperfine (hf) spectroscopy in combination with H2O/D2O exchange experiments and DFT modeling, and compared to the menasemiquinone one bound to the QD site (MSKD) previously studied by us. DMSKD and MSKD are shown to bind in a similar and strongly asymmetric manner through a short (~1.7 Å) H-bond. The origin of the specific hf pattern resolved on the DMSKD field-swept EPR spectrum is unambiguously ascribed to slightly inequivalent contributions from two β-methylene protons of the isoprenoid side chain. DFT calculations show that their large isotropic hf coupling constants (Aiso ~12 and 15 MHz) are consistent with both (i) a specific highly asymmetric binding mode of DMSKD and (ii) a near in-plane orientation of its isoprenyl chain at Cβ relative to the aromatic ring, which differs by ~90° to that predicted for free or NarGHI-bound MSK. Our results provide new insights into how the conformation and the redox properties of different natural quinones are selectively fine-tuned by the protein environment at a single Q site. Such a fine-tuning most likely contributes to render NarGHI as an efficient and flexible respiratory enzyme to be used upon rapid variations of the Q-pool content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.