Abstract

Besides being a common haematological disorder caused by a reduction in β-globin production, β-thalassemia has been reported to impair body calcium homeostasis, leading to massive bone loss and increased fracture risk. Here, we demonstrated that heterozygous β-globin knockout thalassemic mice had a lower rate of duodenal calcium absorption compared with the wild-type littermates, whereas the epithelial electrical parameters, including transepithelial resistance, were not affected, suggesting no change in the epithelial integrity and permeability. Daily subcutaneous injection of 1 µg kg(-1) 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ] for 3 days enhanced the duodenal calcium absorption in wild-type, but not in thalassemic mice. Although β-thalassemia increased the mRNA level of divalent metal transporter-1, an iron transporter in the duodenum, it had no effect on the transcripts of ferroportin-1 or the principal calcium transporters. In conclusion, β-thalassemia impaired the 1,25(OH)2 D3 -dependent intestinal calcium absorption at the post-transcriptional level, which, in turn, contributed to the dysregulation of body calcium metabolism and β-thalassemia-induced osteopenia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.