Abstract

A highly 1,2-trans-selective synthesis of glycosyl boranophosphate derivatives by glycosylation of dimethyl boranophosphate with glycosyl iodides was developed. A study on the reaction mechanism indicated that the stereoselectivity of the reactions is controlled by neighboring group participation. The resultant glycosyl boranophosphate triesters were converted into the corresponding boranophosphate diesters and condensed with appropriately protected monosaccharides to give disaccharides linked with an anomeric boranophosphate linkage. Furthermore, the disaccharides worked as precursors of the corresponding phosphodiester-linked disaccharides. The whole synthesis of boranophosphate-linked disaccharides and their conversion to the phosphodiester-linked disaccharides were accomplished in good yields without loss of stereopurity at the anomeric position, indicating that the method is useful to synthesize diastereopure glycosyl phosphate-containing biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.