Abstract

In order to learn more about the molecular basis for the inhibition of DNA replication produced by antitumor platinum drugs, we investigated DNA polymerization using DNA templates site-specifically modified with the 1,2-GG intrastrand cross-link of dinuclear bifunctional [ { trans -PtCl ( NH 3 ) 2 } 2 { l-spermidine-N 1 ,N 8 } ] 3 + ( BBR3571 ) or conventional mononuclear cisplatin. These cross-links which have the same nature, but differ in the size and character of the conformational alteration induced in double-helical DNA, were analyzed for bypass ability with reverse transcriptase of human immunodeficiency virus type 1 and Klenow fragment of DNA polymerase I deficient in exonuclease activity. We found that the 1,2-GG intrastrand CL of BBR3571 inhibited DNA translesion synthesis markedly more than the same adduct of cisplatin. This result was explained by a larger size of the cross-link of BBR3571 and by a flexibility induced in DNA by this cross-link which can make the productive binding of this adduct at the polymerase site more difficult.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.