Abstract

1,2-Amino oxygenation of alkenes has emerged as one of the most straightforward synthetic methods to produce β-amino alcohols, which are important organic building blocks. Thus, a practical synthetic strategy for 1,2-amino oxygenation is highly desirable. Here, we reported an electro-oxidative intermolecular 1,2-amino oxygenation of alkenes with hydrogen evolution, removing the requirement of extra-oxidant. Using commercial oxygen and nitrogen sources as starting materials, this method provides a cheap, scalable, and efficient route to a set of valuable β-amino alcohol derivatives. Moreover, the merit of this protocol has been exhibited by its broad substrate scope and good application in continuous-flow reactors. Furthermore, this method can be extended to other amino-functionalization of alkenes, thereby showing the potential to inspire advances in applications of electro-induced N-centered radicals (NCRs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call