Abstract

Electrochemical water splitting is strongly dependent on mass transport and active sites, however, the difficulty in facilitating mass transport and exposing sufficient active sites is the major bottleneck for both half reactions of the overall water splitting, i.e., hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). To address these two issues, a facile and economical strategy is demonstrated for the preparation of the bimetallic sulfides anchored three-dimensional (3D) nitrogen-doped graphene foam (MoS2-NiS2/NGF) hybrid for efficient overall water splitting. As a result, strong interactions occur between MoS2-NiS2 nanoparticles and NGF with unique 3D interconnected tubular hollow structure, leading to the superior performance towards HER and OER. The overpotential and charge transfer resistance of the hybrid are much lower than those of the bare NGF, MoS2/NGF, NiS2/NGF, and physically mixed MoS2-NiS2 + NGF, which can be attributed to the synergistic effect of NGF and bimetallic sulfides with hetero interfaces, thus endowing MoS2-NiS2/NGF abundant active sites and diversified pathways for highly-efficient transport of mass and electron. This bifunctional catalyst also exhibits excellent overall water splitting capability with a current density of 10 mA cm−2 at 1.64 V, which provides a platform for the synthesis of large-scale and cost-efficient catalysts for water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.