Abstract
Halide perovskite nanocrystal (PNC) of 3D CsPbX3 as a scintillator has aroused intensive attention with advanced applications in radiation detection and X-ray imaging. However, the low light yield and serious toxicity of Pb2+ severely hinder advanced optoelectronic applications. To reduce these fatal shortcomings, a family of new environmentally friendly 0D hybrid lead-free indium halides of [DADPA]InX6·H2O (DADPA = 3,3'-diaminodipropylamine; X = Cl and Br) was prepared. Upon UV excitation, these halides display strong broadband yellow-orange light emissions, and the photoluminescence quantum yield (PLQY) can be optimized up to near unity through the Sb3+-doping strategy. Significantly, high PLQY, negligible self-absorption and low attenuation ability toward X-ray render extraordinary scintillation performance with a high light yield of 51 875 photons MeV-1 and ultralow detection limit of 98.3 nGyair s-1, which is far superior to typical 3D PNC scintillators. Additionally, the ultra-high spatial resolution of 25.15 lp mm-1, negligible afterglow time (2.75 ms) and robust radiant stability demonstrates excellent X-ray imaging performance. To the best of our knowledge, this is the first report on X-ray scintillation based on 0D indium halide materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.