Abstract

The pursuit of a desirable photocatalytic technology has always been accompanied by photocatalyst design and development, marking high activity, long-term stability, and low cost. Herein, an in-situ deposition approach is used to integrate plasmonic 0D Ag nanoparticles on the surface of 2D slice-like 2,9,16,23-tetranitrocopper(II) phthalocyanine (CuPc) sensitized 1D Bi2MoO6 nanofibers (Ag-CuPc/Bi2MoO6) for visible-light-induced tetracycline (TC) photocatalysis. Benefiting from the combination of 2D CuPc sensitization, and surface plasmon resonance (SPR) effect of 0D Ag nanoparticles, we experimentally find that the Ag-CuPc/Bi2MoO6 nanofibers boost the visible-light utilization efficiency, promote charge transfer, and separation, and accelerate electron redox transformation in TC photocatalysis. The superior photocatalytic activity is attributed to the strong interfacial interaction, and Z-scheme heterojunction synergy in Ag-CuPc/Bi2MoO6 nanofibers. This work opens new horizons for the delicate design of promising Z-scheme visible-light photocatalysts for the removal of antibiotics in wastewater, realizing water purifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.