Abstract

In this study, the reactive ion etching in combination with alkaline etching was employed to texture the surface of a 156×156mm2 multi-crystalline silicon wafers to reduce their solar reflectivity and improve conversion efficiency. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6) and oxygen (O2), were activated in the radio-frequency (rf) plasma to fabricate pyramids in an reactive ion etching (RIE) system. The multi-crystalline Si substrates were etched in various compositions of gases to form the nanostructures of various shapes. Besides the nanoscale features, the high density of nanostructures formed on the multi-crystalline Si surface was also required to significantly reduce the reflectivity. A low reflectivity surface was successfully fabricated with the average reflectivity significantly reduced down to <2% for the wavelength range of 300–850nm. The short wavelength spectral response (blue response) improvement is observed in RIE textured solar cells compared to the standard textured cells. The RIE textured surfaces in combination with optimized emitter resistance result in a remarkable enhancement of short circuit current density. Compared with the acidic textured solar cells, the absolute conversion efficiency of the alkaline+RIE textured cells was improved by 0.76% in average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.