Abstract

Pulse energy scaling of mode-locked femtosecond fiber oscillators is important for applications in material processing and nonlinear optics. To date the highest output pulse energies have been obtained from all-normal dispersion fiber oscillators operating in the dissipative soliton regime [1,2]. The energies of these dissipative solitons are limited by the total nonlinear phase-shift accumulated over one resonator round-trip. To increase the pulse energy the peak intensities inside the fiber section of the oscillator must be reduced. This can be achieved either by increase of the mode-field diameter of the fibers or the pulse duration. The mode-field diameter can be increased up to approximately 25 µm in standard large-mode-area (LMA) fibers. Long pulse durations can be obtained in the giant-chirp regime of all-normal dispersion fiber oscillators with large total resonator dispersion [3]. We combined both power-scaling methods to obtain 0.5 µJ pulses from a ytterbium step-index fiber oscillator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.