Abstract

Although clinical studies of the high-flow nasal cannula (HFNC) and its effect on positive end-expiratory pressure (PEEP) have been performed, the mechanism of the washout effect and its relation with HFNC flow have not been well evaluated. Therefore, we made a respiratory model that can exhale with controllable end-tidal PCO2 (PETCO2) to evaluate the washout effect of HFNC.Objective. To evaluate the quantitative results of HFNC's washout effect comparing open- and closed-mouth models.

Highlights

  • Clinical studies of the high-flow nasal cannula (HFNC) and its effect on positive end-expiratory pressure (PEEP) have been performed, the mechanism of the washout effect and its relation with HFNC flow have not been well evaluated

  • we made a respiratory model that can exhale with controllable end-tidal PCO2

  • The artificial respiratory model consisted of a lung model

Read more

Summary

Introduction

Clinical studies of the high-flow nasal cannula (HFNC) and its effect on positive end-expiratory pressure (PEEP) have been performed, the mechanism of the washout effect and its relation with HFNC flow have not been well evaluated. We made a respiratory model that can exhale with controllable end-tidal PCO2 (PETCO2) to evaluate the washout effect of HFNC.Objective. To evaluate the quantitative results of HFNC’s washout effect comparing open- and closed-mouth models

Methods
Discussion
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call