Abstract

Texture evolution in surface layer and subsurface layer during high temperature annealing process of 0.20mm CGO silicon steel was analyzed by X-ray diffraction (XRD) texture analysis technique and electron back-scattered diffraction (EBSD) micro-texture analysis technique. The results indicate that 0.20mm CGO silicon steel experiences low-temperature recovery, primary recrystallization, recrystallized grain growth, and secondary recrystallization process, finally forms sharp Goss texture. Goss oriented grains originate from the Goss grain sub-structure residues in {111} deformation bands of recovery matrix initially, after 2h thermal insulation at 600℃, Goss grain nucleation occurs in the deformation matrix in the first place, then recrystallizes gradually in the following heating process, Goss oriented grains do not have the size advantage in this process, primary recrystallization finishes at 700℃, γ fiber texture and {112} are the major texture components in the matrix. With the increase of annealing temperature, the content and average grain size of Goss oriented grains are improved gradually. At 900-1000℃, Goss grains grow up rapidly and sharp Goss texture is formed by swallowing other oriented grains, secondary recrystallization has taken place at 1000℃.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call