Abstract

Abstract Introduction There is large inter-individual variability in the relationship between obstructive sleep apnea (OSA) severity and lapses in vigilance as measured using psychomotor vigilance test (PVT). We have previously shown that overnight sleep EEG K-complex slow wave coupling (∆SWAK) exhibits a dose-responsive relationship with next-day lapses in vigilance in OSA on and off treatment. We hypothesized that a variable thalamic dysfunction in OSA explains difference in lapses in vigilance and alterations in ∆SWAK across individuals. Methods Five newly diagnosed severe OSA subjects (mean apnea-hypopnea index [AHI4%=57.1±22.8/hr.]) with excessive daytime sleepiness (Epworth Sleepiness Scale=11±3.4) underwent nocturnal polysomnography followed by PVT testing within a 3T SKYRA MRI scanner. The PVT task inside the scanner (PVT-fMRI) was adapted to match the gold standard PVT-192 device. Each fMRI scanning session consisted of 2 10-min PVT runs interleaved with 2 control conditions wherein the subject pressed the response button at random intervals absent of a visual stimulus. fMRI data was analyzed in 2-step procedure (individual time-series followed by group analysis) using Analysis of Functional Neuroimages (AFNI) software package. To estimate thalamic activity during PVT-fMRI, parameter estimates of the %change in blood-oxygen-level-dependent (BOLD) signal using the contrast PVT-Control were used as the primary metric. The region of interest was limited to the bilateral thalamus using the Eickhoff-Zilles macro labels from the MNI N27 template. Results In a preliminary test, PVT performance for the subjects inside the scanner was not significantly different from that outside the scanner (PVTLapsesfMRI=7.3±2.1 vs. PVTLapsesPVT192=6.4±3.6 mean±std; PVTLapses=reaction time > 500 ms.). Within subjects, a trend toward lower thalamic recruitment was observed during PVT-fMRI (-0.17±0.2%; p=0.1). Further, lower thalamic activity during PVT-fMRI also showed a trend to lower overnight ∆SWAK (mean -1.2±1.4) values (r = 0.61, p = 0.17). Conclusion In severe OSA subjects with excessive daytime sleepiness, we observed a trend to reduced thalamic activity during daytime PVT. Overnight EEG K-complex slow wave coupling showed a similar trend with next-day thalamic activity during PVT, however the small sample size may have limited our ability to detect this association with statistical significance. Support AASM Foundation 199-FP-18; NIH K24HL109156

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call