Abstract
The probability of a property on the collection of all finite relational structures is the limit as n → ∞ of the fraction of structures with n elements satisfying the property, provided the limit exists. It is known that the 0–1 law holds for any property expressible in first-order logic, i.e., the probability of any such property exists and is either 0 or 1. Moreover, the associated decision problem for the probabilities is solvable.We investigate here fragments of existential second-order logic in which we restrict the patterns of first-order quantifiers. We focus on fragments in which the first-order part belongs to a prefix class. We show that the classifications of prefix classes of first-order logic with equality according to the solvability of the finite satisfiability problem and according to the 0–1 law for the corresponding ∑ 1 1 fragment are identical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.