Abstract

Abstract Introduction The mechanisms by which sleep disruption impact memory may depend on sleep stage, as rapid eye movement (REM) and slow wave sleep (SWS) differ in several significant ways, including degree of neuronal synchrony and frequency of cortical local field potential oscillations. Here we sought to examine the relationship between stage-specific disruption of sleep and its effect on spatial navigational memory. Methods 9 healthy adult subjects participated in this study which involved 3 in-lab polysomnograms (normal, REM-disruption, and SWS-disruption) accompanied by pre- and post-sleep functional neuroimaging of brain during a spatial navigational memory task. Graded auditory stimuli consisting of 0.5 second bursts of high-frequency tones (300-3000Hz) were used to disrupt sleep (REM/SWS) in real time. Primary metrics to ascertain the effect of these auditory tones on sleep were time in sleep stage (REM/SWS) as a % of total sleep time (TST), bout length. The primary metric for spatial navigational memory was %change in overnight completion time on a first-person-experience 3D maze task. Results Sleep macrostructure was normal during the normal night (TST:379.9±56.6 min; SWS:19.5±7.6%; REM:19.4±5.3%; mean±std). Stage-specific disruption of sleep was achieved using auditory tones during a) SWS-disruption condition (TST:388.9±47.4 mins; SWS:6.6±4.8%; REM:18.7±5.2%) and b) REM-disruption condition (TST:365.3±69.8 mins; SWS:17.1±7.7%; REM:12.1±6.6%). SWS-disruption reduced mean bout length of SWS as compared to no disruption (1.3±0.8 mins vs. 10.3±8.2 mins; p<0.01) and REM-disruption reduced mean bout length of REM as compared to no disruption (2.2±1.7 vs. 10.6±5.2 mins; p<0.01). When sleep was not disrupted, subjects achieved overnight improvements in performance (25.3±17%) which remained unchanged during REM-disruption (18.8±29.6%, p=0.5) and during SWS-disruption (38.8±24.4%; p=0.2). Morning psychomotor vigilance was also unaffected by condition. Conclusion Stage specific disruption of sleep can be achieved using graded auditory tones. While performance on a virtual 3D maze remain unchanged with stage specific sleep disruption, lower sample size may have limited our ability to detect the change. Activation patterns from functional neuroimaging that were acquired during the spatial navigation task may elucidate the interaction between stage-specific sleep disruption and performance. Support NIH R21AG059179

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call