Abstract

Abstract Introduction Sleep is important for aging, health, and disease, but its cellular role in these outcomes is poorly understood. Basic research suggests that disturbed and insufficient sleep impair mitochondrial bioenergetics, which is involved in numerous aging-related chronic conditions. However, the relationship between sleep and bioenergetics has not been examined in humans. We examined associations of self-reported sleep with systemic bioenergetic function in peripheral blood mononuclear cells (PBMCs) of community-dwelling adults. Methods N = 43 adults (79% female) ages 48–70 (M = 61.63, SD = 5.99) completed the Pittsburgh Sleep Quality Index (PSQI) from which key components of sleep (satisfaction, alertness, timing, efficiency, and duration) were calculated. Participants provided blood samples from which PBMCs were isolated and measured for bioenergetics using extracellular flux analysis. Associations of sleep components with bioenergetic parameters, including the Bioenergetic Health Index (BHI), were examined. Results In bivariate analyses, lower sleep efficiency was associated with lower maximal respiration, spare capacity, and BHI (ps < 0.05). Longer sleep duration was associated with lower BHI (p < 0.01) and later sleep timing was associated with higher basal respiration, ATP-linked respiration, maximal respiration, spare capacity, and non-mitochondrial respiration (ps < 0.05). After adjustment for age, sex, and body mass index, lower sleep efficiency (β = 0.52, p < 0.01) and longer sleep duration (β = -0.43, p < 0.01) were associated with lower BHI. Conclusion Self-reported indices of sleep efficiency and duration are related to systemic bioenergetic function in humans, suggesting a possible cellular pathway linking sleep to health. Support (if any) T32HL082610

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call