Abstract

Abstract Introduction The neural circuits controlling rapid eye movement (REM) sleep, and in particular the role of the medulla in regulating this brain state, remains an active area of study. Previous electrophysiological recordings in the dorsomedial medulla (DM) and electrical stimulation experiments suggested an important role of this area in the control of REM sleep. However the identity of the involved neurons and their precise role in REM sleep regulation are still unclear. Methods The properties of DM GAD2 neurons in mice were investigated through stereotaxic injection of CRE-dependent viruses in conjunction with implantation of electrodes for electroencephalogram (EEG) and electromyogram (EMG) recordings and optic fibers. Experiments included in vivo calcium imaging (fiber photometry) across sleep and wake states, optogenetic stimulation of cell bodies, chemogenetic excitation and suppression (DREADDs), and connectivity mapping using viral tracing and optogenetics. Results Imaging the calcium activity of DM GAD2 neurons in vivo indicates that these neurons are most active during REM sleep. Optogenetic stimulation of DM GAD2 neurons reliably triggered transitions into REM sleep from NREM sleep. Consistent with this, chemogenetic activation of DM GAD2 neurons increased the amount of REM sleep while inhibition suppressed its occurrence and enhanced NREM sleep. Anatomical tracing revealed that DM GAD2 neurons project to several areas involved in sleep / wake regulation including the wake-promoting locus coeruleus (LC) and the REM sleep-suppressing ventrolateral periaquaductal gray (vlPAG). Optogenetic activation of axonal projections from DM to LC, and DM to vlPAG was sufficient to induce REM sleep. Conclusion These experiments demonstrate that DM inhibitory neurons expressing GAD2 powerfully promote initiation of REM sleep in mice. These findings further characterize the dorsomedial medulla as a critical structure involved in REM sleep regulation and inform future investigations of the REM sleep circuitry. Support R01 HL149133

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call