Abstract

Abstract Introduction A decline in sleep quality and reduction in slow wave sleep (SWS) and slow wave activity (SWA) are common in older adults. Prior studies have shown that manipulating body temperature during sleep can increase SWS/SWA. The aim of this study was to determine the effects of manipulation of body temperatures during sleep, using a high heat capacity mattress, on SWS/SWA and heart rate variability in post-menopausal women. Methods Twenty-four healthy postmenopausal women between 40–75 years of age (mean age 62.4 ± 8.2 years, mean BMI 25.4 ± 3.5 kg/m2) were randomized in a single-blind, counterbalanced, cross-over manner to sleep on either a high heat capacity mattress (HHCM) or a low heat capacity mattress(LHCM) a week apart. Sleep was recorded using polysomnography during an 8-hour sleep opportunity. Core and peripheral temperatures were recorded using Equivital and ibutton respectively. Results In comparison to the LHCM, sleep on HHCM exhibited a selective increase in SWS (average increase in Stage N3 of 9.6 minutes (2.1%), p = 0.04) and in slow oscillatory activity (0.5-1Hz) in the first NREM/REM cycle (p=0.04). In addition, the HHCM induced a greater reduction in core body temperature (p=0.002), and delayed the increase in mattress surface temperature (maximal difference LHCM-HHCM: 4.66±0.17°C). Average heart rate was 2.7 beats/minute lower across the night on the HHCM compared to the LHCM (p=0.001). Conclusion The results of this study indicate that manipulation of body temperature during sleep may be a useful approach to enhance SWS sleep and cardiovascular function in postmenopausal women. Support Technogel

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.