Abstract

With the ever-increasing versatility, scaling up and commercialization of coal-fired fluidized bed boiler technologies, it has become more and more important to improve the technique of draining bed ash from bubbling or circulating fluidized bed boilers. Choosing an ash cooler is a good way but highly stable and reliable system is hard to find for a massive ash flow rate having a broad particle size distributions. An innovative technique known as Vibration Fluidized Bed Ash Cooler (VFBAC) is proposed in this paper. It can drain bottom ash at a high temperature from FB or CFB boilers continuously and controllably. In this device, air used for cooling can be used as combustion-aided air or coal spreading air. The hot ash is cooled by the air to a temperature which it can be transported easily and safely by conventional technology. Meanwhile, an industrial apparatus utilizing the new technology was manufactured and used in a 35 t/h bubbling FB boiler. For the purpose of detecting residence time distribution of wide-sieved bed materials in this ash cooler systematically, advantage was taken of a new approach for physical quality discrimination. Investigations into the hydrodynamic characteristics of the gas-solid two-phase flows and theoretical analyses on hotmore » operational performance were carried out. The results show that heat recovery efficiency of the ash cooler reaches 85% greater when operating at a ratio of air to ash of 1.5{approximately}2.5 Nm{sup 3}/kg.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call