Abstract

We have investigated the effect of ferrofluid incorporated (5–20% v/v) flake-shaped iron particles in silicion oil based magnetorheological fluid (MR fluid). The fluids physical properties like crystalline phase, shape size distribution and magnetization of both the fluids were studied individually. Thereafter, magnetic stimuli-response of ferrofluid doped MR fluid on rheological properties was determined in static and dynamic modes. The observed enhancement in yield stress due to addition of magnetic nanoparticles is correlated using universal yield stress scaling equation with magnetic field strength. Subsequently, cylindrical measurement technique is used to investigate fluid stability over time. Further, the relative viscosity (η/η∞) −vs- Mason number (Mn) shows scaling (Mn ≤ 10−2), at higher magnetic field confirming negligible thermal and colloidal forces. The oscillatory strain sweep tests reveals a cross-over from viscoelastic-to-viscous behavior of suspension at critical strain value y = 0.1. The increase in dynamic efficiency at is due to the reduction in sliding friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.