Abstract

Oxygenases are useful catalysts for the selective incorporation of molecular oxygen into hydrocarbons. Here, we report on the application of isolated, cell free 2-hydroxybiphenyl 3-monooxygenase (HbpA) as catalyst for the regio- and chemospecific hydroxylation of 2-hydroxybiphenyl to 2,3-dihydroxybiphenyl. The catalyst was prepared from recombinant Escherichia coli using expanded bed adsorption chromatography and could be stored without significant loss of activity in lyophilized form. The reaction was performed in an aerated and thermostated simple stirred glass vessel in an aqueous (20% v/v)/organic (80% v/v) reaction medium. This allowed in situ product recovery preventing substrate and product inhibition of the catalyst as well as decay of the labile product 2,3-dihydroxybiphenyl. Enzymatic regeneration of reduced nicotinamide cofactors was achieved using the formate/formate dehydrogenase system. We obtained volumetric productivities of up to 0.45 g l−1 h−1. No significant decrease of productivity was observed within 7 h and more. Product purification (purity 92%) was achieved using solid phase extraction with aluminum oxide followed by crystallization as a polishing step (purity>99%).To our knowledge, these results show for the first time the perspectives of integrated enzyme and cofactor regeneration-based biocatalytic processes in organic/aqueous emulsions, coupled with in situ product recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.