Abstract

We report the power scaling of a diode-pumped GaAs-based 850-nm vertical external-cavity surface-emitting laser, by use of an intracavity silicon carbide (SiC) heatspreader optically contacted to the semiconductor surface. To our knowledge, this is the first demonstration of bonding of SiC to a III-V semiconductor structure using the technique of liquid capillarity. High output power of >0.5 W in a circularly symmetric, TEM/sub 00/ output beam has been achieved with a spectral shift of only 0.6 nm/W of pump power. No thermal rollover was evident up to the highest pump power available, implying significant further output-power scaling potential using this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call