Abstract

Limitations in data transmission caused by modal dispersion in fiber-optic links can be significantly improved using equalization techniques. In this paper, two different equalizer implementation approaches are proposed to extend the transmission capacities of existing fiber-optic links. The building blocks of the equalizer including a multiplier cell, a delay line, and an output buffer stage are fully integrated on a 0.18-/spl mu/m CMOS process. For the continuous-time tap-delay implementation, a passive LC delay line and an active inductance peaking delay line are compared for performance against process variation, as well as power consumption. In addition, a delay-locked loop is proposed to counter delay variations caused by changes in the process corner. A 10-Gb/s nonreturn-to-zero signal is received after transmission through a 500-m multimode-fiber channel, and the signal impairment due to the differential modal delay is successfully compensated using both feed-forward equalizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.