Abstract

A study was carried out of the processes of compaction, structure formation and mechanical properties of ceramics based on zirconium boride with sintering-activating additives of boron, silicon and chromium carbides, as well as molybdenum silicide, obtained under hot pressing conditions in a CO atmosphere. In ZrB2—18% (vol.) B4C ceramics, the use of the B4C additive reduces the optimal hot pressing temperature to 1940 °C and accelerates the compaction process of the ceramics. The influence of the sample preparation background on high-temperature creep has been established, as a result of which either plastic flow of the material occurs over a wide temperature range, or a high temperature threshold for yield and brittle fracture. In ZrB2—SiC ceramics, during high-temperature plastic deformation both during sintering and in creep tests, a bidisperse structure with a submicrograined component is formed, which is responsible for high creep rates. In ZrB2—B4C ceramics there is no submicrograin component, which provides high creep resistance up to 2000 °C. The phase composition of ZrB2—MoSi2 ceramics changes dramatically during hot pressing; it is represented by a composition of a ZrB2 solid solution with the second phases of SiC and B4C, and in terms of creep resistance it occupies an intermediate position between two other ceramics. Keywords: ultra-high temperature ceramics, zirconium diboride, silicon, boron and chromium carbides, hot pressing in a CO atmosphere, compaction kinetics, structure, creep resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call