Abstract

AbstractThe formation of a nanocrystalline composite of a ZnO–C system with simultaneous mechanical activation of a mixture of zinc oxide and graphite powders in a ball mill in an inert atmosphere is studied. It is shown that the presence of graphite reduces the efficiency of dispersing ZnO crystallites. The following principal dispersion mechanisms of graphite are determined: the fragmentation of particles due to the impact of grinding bodies and the exfoliation of flakes by submicron zinc oxide particles. It has been established that a composite system is formed as a result of the prolonged mechanical activation effect on the ZnO–graphite mixture, which is a nanocrystalline zinc oxide powder with uniformly distributed inclusions of micro- and nanocrystalline graphite, turbostratic carbon, exfoliated graphene structures, and amorphous carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call