Abstract

We have studied the energy band structure and the Γ− X carrier transfer mechanism for type II tunneling bi-quantum wells consisting of GaAs wells, AlGaAs barriers of different thicknesses, and AlAs layers by cw and time-resolved photoluminescence measurements. The cw photoluminescence spectra of the indirect recombination of X electrons in the 7.1 nm thick AlAs layers with Γ holes in the 2.8 nm thick GaAs wells show weak zero-phonon lines indicating that the AlAs confined states at X xy are lower than those at Y z . Time-resolved photoluminescence reveals that the carrier transfer time depends stronger on temperature for thicker AlGaAs barriers. Two scattering mechanisms, temperature-dependent phonon scattering and the temperature-independent interface scattering, are probably involved in the carrier transfer, the latter becoming smaller with increasing AlGaAs barrier thickness. Our results are compared with those obtained for similar type II GaAs/AlAs superlattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.