Abstract
Background/Aims: Hepatitis B viral protein X (HBx) is implicated in the pathogenesis of hepatocellular carcinoma (HCC) as well as the elevation of heat shock proteins (HSPs) after hepatitis B virus (HBV) infection. We thus investigated the anticancer effects of an HSP90 inhibitor 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) in HBxtransfected hepatocellular carcinoma cells. MethodspcDNA-HBx was made by inserting the HBx gene derived from the HBV-infected patient into pcDNA3.1 using the restriction enzymes (XbaI/HindIII). HBx-expressing HepG2 cells were then generated by transfecting HepG2 cells with pcDNA containing HBx gene. To compare the anticancer effects of 17-DMAG between pcDNA-HBx transfected HepG2 cells and the control cells (pcDNA-transfected HepG2 cells), we performed various molecular studies, including Ez-cytox proliferation assay, Western blot analysis, and flow cytometry. Results17-DMAG inhibited the proliferation of pcDNA-HBx transfected HepG2 cells better than control cells (P<0.05). After treating with a various concentration of 17-DMAG (50â1,000 nM), pcDNA-HBx transfected HepG2 cells exhibited higher expression of pro-apoptotic proteins (c-caspase-3, c-caspase-8, and c-caspase-9) than did control cells (P<0.05). pcDNAHBx transfected HepG2 cells showed higher activities of caspase-3, caspase-8, and caspase-9 than did control cells (P<0.05). Finally, we found that the expression of pro-apoptotic proteins (PARP and c-caspase-3) was considerably decreased by the use of a caspase inhibitor suggesting that 17-DMAG induces the cell death of HepG2 cells caspase-dependently. ConclusionsOur study strongly suggests that 17-DMAG has antiviral effects against HBV as well as anticancer effects against HepG2 cells. Thus, the application of 17-DMAG appears to be particularly advantageous to the HCC patients related with HBV infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.