Abstract

This study was conducted to perform various sensitivity experiments using WRF (Weather Research and Forecasting) model in order to determine the effects of terrains of the Korean Peninsula and the land-sea thermal contrast on the formation and development of the convergent cloud band for the cases of 1 February 2012. The sensitivity experiments consist of the following five ones: CNTL experiment (control experiment), and TMBT experiment, BDMT experiment and ALL experiment that set the terrain altitude of Taeback Mountains and Northern mountain complex as zero, respectively, and the altitude of the above-mentioned two mountains as zero, and LANDSEA experiment that set to change the Korean Peninsula into sea in order to find out the land-sea thermal contrast effect. These experiment results showed that a cold air current stemming from the Siberian high pressure met the group of northern mountains with high topography altitude and was separated into two air currents. These two separated air currents met each other again on the Middle and Northern East Sea, downstream of the group of northern mountains and converged finally, creating the convergent cloud band. And these experiments suggested that the convergent cloud band located on the Middle and Northern East Sea, and the cloud band lying on the southern East sea to the coastal waters of the Japanese Island facing the East Sea, were generated and developed by different dynamical mechanisms. Also it was found that the topography of Taeback Mountains created a warm air advection region due to temperature rise by adiabatic compression near the coastal waters of Yeongdong Region, downstream of the mountains. In conclusion, these experiment results clearly showed that the most essential factor having an effect on the generation and development of the convergent cloud band was the topography effect of the northern mountain complex, and that the land-sea thermal contrast effect was insignificant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.