Abstract
To evaluate directly gas entrainment (GE) phenomena in fast reactors, a numerical simulation method based on a high-precision volume-of-fluid (VOF) methodology have been studied. Unstructured meshes to subdivide simulation domains have been employed because exact modeling of complicated geometries is necessary for GE simulations. In this note, formulations of each calculation procedure in the high-precision VOF methodology on unstructured meshes are briefly presented. Calculation procedures of surface tension forces are also presented. In addition, unphysical behaviors of velocity distributions near gas-liquid interface induced by inappropriate formulation of pressure gradient are addressed and an appropriate formulation is presented considering proper balance conditions between pressure and surface tension forces. Finally, the improved simulation method is applied to the basic GE experiment. The simulation results show that the GE phenomena occur in the same mechanism with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.