Abstract

Unileg-type thermoelectric generators have proven to be a good choice for high-temperature applications, because their composition from a single thermoelectric material avoids different thermal expansion coefficients, giving the structure good mechanical strength and increased lifespan during thermal cycling. These structures are usually composed of a thermoelectric pellet with metallic electrical conductors joining the hot and cold ends of consecutive pellets. The novel unileg structure described herein is designed to deal with one of the main issues with traditional devices, viz. the physical and chemical stability of the solder between the pellet and the conductor at the hot side. The material for which this structure is proposed is a p-type Ca3Co4O9 semiconductor oxide, due to its chemical stability at high temperature and good machinability. This final requirement is related to the main innovation of the structure, viz. a partial cut that divides the pellet longitudinally, leaving two legs joined by an uncut section, forming a section similar to the letter Π. The metallic conductor stripe usually employed in unileg thermoelectric generator manufacturing is replaced by a coating of conductive material, in this case silver, on one of the legs resulting from the cut. Due to these operations, one of the legs is practically short-circuited and acts as an electrical conductor for the unileg structure, eliminating the need for soldering at the hot end of the pellet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.