Abstract

The paper presents the experience of using the user subroutine UMAT for FEM package SIMULIA Abaqus/CAE for damage accumulation processes in the vicinity of the crack. A continuum damage mechanics model based on the constitutive relations of linear elastic isotropic materials with the incorporated damage tensor components is used to describe the material behavior. The material nonlinearity arising from the deformation process is modelled by introducing an anisotropic damage tensor of the second rank into the constitutive equation. The material model is described by means of user procedure UMAT of SIMULIA Abaqus. The finite element (FE) mechanical constitutive model is implemented in Abaqus/Standard via a UMAT routine. Numerical experiments for a large series of cracked specimens have been performed. Computed stress and damage tensor components were found. It is shown that they are not dependent on the FE mesh refinement. Distributions of the damage tensor components in the vicinity of the crack tip in cracked specimens of different configurations under mixed mode loading in a wide range of mixed mode loadings are found. The configurations of active damage accumulation process zone in the cracked specimens are obtained. It is shown that the damage accumulation process has a substantial influence on the stress-strain state in the vicinity of the crack tip and leads to a decrease of the stress concentration in cracked specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.