Abstract
Microtubules are fundamental to neuronal morphogenesis and function. Mutations in tubulin, the major constituent of microtubules, result in neuronal diseases. Here, we have analysed β-tubulin mutations that cause neuronal diseases and we have identified mutations that strongly inhibit axonal transport of vesicles and mitochondria. These mutations are in the H12 helix of β-tubulin and change the negative charge on the surface of the microtubule. This surface is the interface between microtubules and kinesin superfamily motor proteins (KIF). The binding of axonal transport KIFs to microtubules is dominant negatively disrupted by these mutations, which alters the localization of KIFs in neurons and inhibits axon elongation in vivo. In humans, these mutations induce broad neurological symptoms, such as loss of axons in the central nervous system and peripheral neuropathy. Thus, our data identified the critical region of β-tubulin required for axonal transport and suggest a molecular mechanism for human neuronal diseases caused by tubulin mutations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.