Abstract
β-Thalassemia is caused by reduced (β+) or absent (β0) synthesis of the β-globin chains of hemoglobin. Three clinical and hematological conditions of increasing severity are recognized: the β-thalassemia carrier state, thalassemia intermedia, and thalassemia major, a severe transfusion-dependent anemia. The severity of disease expression is related mainly to the degree of α-globin chain excess, which precipitates in the red blood cell precursors, causing both mechanic and oxidative damage (ineffective erythropoiesis). Any mechanism that reduces the number of unbound α-globin chains in the red cells may ameliorate the detrimental effects of excess α-globin chains. Factors include the inheritance of mild/silent β-thalassemia mutations, the coinheritance of α-thalassemia alleles, and increased γ-globin chain production. The clinical severity of β-thalassemia syndromes is also influenced by genetic factors unlinked to globin genes as well as environmental conditions and management. Transfusions and oral iron chelation therapy have dramatically improved the quality of life for patients with thalassemia major. Previously a rapidly fatal disease in early childhood, β-thalassemia is now a chronic disease with a greater life expectancy. At present, the only definitive cure is bone marrow transplantation. Therapies undergoing investigation are modulators of erythropoiesis and stem cell gene therapy.Genet Med advance online publication 03 November 2016.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.