Abstract
The thymus plays a crucial role in immune tolerance by exposing developing T cells (thymocytes) to a myriad of self-antigens. Strong T-cell receptor (TCR) engagement induces tolerance in self-reactive thymocytes by stimulating apoptosis or selection into specialized T-cell lineages, including intestinal TCRαβ+ CD8αα+ intraepithelial lymphocytes (IEL). TCR-intrinsic amino acid motifs that can be used to predict whether a TCR will be strongly self-reactive remain elusive. Here, a novel TCR sequence alignment approach revealed that T-cell lineages in C57BL/6 mice had divergent usage of cysteine within two positions of the amino acid at the apex of the complementarity-determining region 3 (CDR3) of the TCRα or TCRβ chain. Compared to pre-selection thymocytes, central CDR3 cysteine usage was increased in IEL and Type A IEL precursors (IELp) and markedly decreased in Foxp3+ regulatory T cells (T-reg) and naïve T cells. These findings reveal a TCR-intrinsic motif that distinguishes Type A IELp and IEL from T-reg and naïve T cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.