Abstract

The purpose of this study was to determine the sensitivity and specificity of α-synuclein seed amplification assay (αSyn-SAA) in antemortem and postmortem cerebrospinal fluid (CSF) of autopsy-confirmed patients with different distributions of pathological αSyn, co-pathologies, and clinical diagnoses. The αSyn-SAA was used to test antemortem CSF samples from 119 subjects with a variety of clinical syndromes and standardized neuropathological examinations from Oregon Health and Science University (OHSU) and University of California San Diego (UCSD; 56 additional postmortem CSF samples available). The αSyn-SAA was also applied to frontal cortex and amygdala homogenates. Sensitivity and specificity were compared across distributions of αSyn pathology. Clinical data and co-pathologies were compared across αSyn-SAA positive and negative groups. Fifty-three individuals without and 66 with αSyn-pathology (neocortical [n=38], limbic [n=7], and amygdala-predominant [n=21]) were included. There was a sensitivity of 97.8% and specificity of 98.1% of the αSyn-SAA to identify patients with limbic/neocortical pathology from antemortem CSF. Sensitivity to detect amygdala-predominant pathology was only 14.3%. Postmortem CSF and brain tissue αSyn-SAA analyses also showed higher assay positivity in samples from limbic/neocortical cases. CSF αSyn-SAA reliably identifies αSyn seeds in patients with diffuse αSyn pathology in the context of co-pathology and non-Lewy body disease (LBD) diagnoses. The analysis of brain homogenates suggests that pathological αSyn in the amygdala might differ from pathological αSyn in the frontal cortex. The αSyn-SAA might facilitate the differential diagnosis of dementias with mixed pathologies. ANN NEUROL 2022;92:650-662.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call