Abstract
α-Synuclein is a pre-synaptic chaperone and its accumulation contributes to differential cell loss in Parkinson's disease. Cytoplasmic expression of α-synuclein can directly modulate apoptotic pathways and contribute to cell survival, whereas induced over-expression of the protein causes oxidative stress through mitochondrial and cytosolic free-radical production. This study aimed to clarify the contribution of endogenous α-synuclein to oxidative stress and its association with cell death. Primary cortical neurons were derived from α-synuclein knock-out (Snca-/-) and wild-type (C57BL/6; WT) mice and treated with in vitro models of oxidative-stress, complex I inhibition and excitotoxicity. Mitochondrial free radical production was determined in isolated mitochondria derived from each mouse strain. Snca-/- derived cortical cultures were more susceptible (P<0.05) to oxidative-stress, but not excitotoxicity. This result was determined by significant increases in cell death (Propidium-Iodide staining) after 6h treatment in Snca-/- (45%±2.7SEM), relative to WT (33%±3.9SEM) cultures. α-Synuclein also confers significant (P<0.05) resistance to low-dose (5nM) rotenone toxicity, with a twofold reduction in cell death in WT, compared with Snca-/- cortical neurons. The expression of α-synuclein had no effect on cortical glutathione levels, or the production of reactive oxygen intermediates in isolated mitochondria. These data indicate that endogenous levels of α-synuclein confer resistance to oxidative stress downstream of free radical production and scavenging. The current data suggest that α-synuclein prevents cytochromec release and apoptosis through inhibition of the MAPK signalling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.