Abstract

The photoexcitation energy transfer was studied in donor-acceptor systems (DA) formed from a mixture of the semiconductor polymer poly [2-methoxy-5- (2`-ethylhexyloxy) -1,4-phenylenevinylene] (MEH-PPV) with C60 fullerene and endohedral metallofullerene Ho@C82. A significant effect of the exciton migration between the polymer units on the quenching of MEH-PPV luminescence has been established. The Foerster radii of nonradiative energy transfer for the investigated DA systems are estimated. It is shown that the DA system formed using endohedral metallofullerenes is the most effective. Based on MEH-PPV, model photovoltaic cells with different doping levels C60 and Ho@C82 were formed. For the formed cells, the spectral sensitivity of the Photo-EMF and the kinetics of the increase in the Photo-EMF signal under pulsed irradiation were measured. The mobility of charge carriers in the studied polymer composites was estimated. It was found that a change in the concentration of endohedral metallofullerene within 1-2% allows you to change the effective mobility of free carriers of the polymer heterojunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.