Abstract

This study investigates the non-covalent coating of cobalt magnetic nanoparticles (MNPs) involving a graphene surface with pyrene-tagged dendritic poly(vinylidene fluoride) (PVDF). Dendrimers bearing a pyrene moiety were selected to play the role of spacers between the graphene surface of the MNPs and the PVDF chains, the pyrene unit being expected to interact with the surface of the MNPs. The pyrene-tagged dendritic spacer 11 decorated with ten acetylenic units was prepared and fully characterized. Azido-functionalized PVDF chains were then grafted onto each branch of the dendrimer using Huisgen's [3+2] cycloaddition reaction. Next, the association of the resulting pyrene-tagged dendritic PVDF 13 with commercially available Co/C MNPs by π-stacking interactions was studied by fluorescence spectroscopy. Evaluated were the stability of the π-stacking interactions when the temperature increased and the reversibility of the process when the temperature decreased. Also, hybrid MNPs were prepared from pyrene-tagged dendrimers decorated either with acetylenic functions (11) or with PVDF branches (13), and they were characterized by transmission electron microscopy and comparative elemental analysis was carried out with naked MNPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.