Abstract

For the first time to our knowledge, a single-phase solid solution Sr(MoO4)0.8(WO4)0.2 was used as an active medium of a Raman laser. Using the high-intensity synchronous picosecond pumping satisfying the condition of phase capture of the parametric Raman interaction on the second vibrational mode made it possible to oscillate six components of Raman radiation with a combined frequency shift on the first (888 cm–1) and second (327 cm–1) vibrational modes in the wavelength range of 1194-1396 nm. Oscillation efficiency of the multiwavelength Raman laser radiation was as high as 10%. By detuning the Raman laser cavity length, the pulse shortening down to 6 ps for the Raman laser radiation components with the combined frequency shift was obtained, which is an order of magnitude shorter than the pumping pulse duration (64 ps).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.