Abstract

Alginates are found in marine brown seaweeds and in extracellular biofilms secreted by some bacteria. Previously, we reported an oligoalginate lyase from Sphingomonas sp. MJ-3 (MJ3-Oal) that had an exolytic activity and protein sequence homology with endolytic polymannuronate (polyM) lyase in the N-terminal region. In this study, the MJ3-Oal was tested for both exolytic and endolytic activity by homology modeling using the crystal structure of Alg17c from Saccharophagus degradans 2-40T. The tyrosine residue at the 426th position, which possibly formed a hydrogen bond with the substrate, was mutated to phenylalanine. The FPLC profiles showed that MJ3-Oal degraded alginate quickly to monomers as a final product through the oligmers, whereas the Tyr426Phe mutant showed only exolytic alginate lyase activity. 1H-NMR spectra also showed that MJ3-Oal degraded the endoglycosidic bond of polyM and polyMG (polymannuronate-guluronate) blocks. These results indicate that oligoalginate lyase from Sphingomonas sp. MJ-3 probably catalyzes the degradation of both exo- and endo-glycosidic bonds of alginate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call