Abstract

Low-spin states in the neutron-rich, N = 90 nuclide $^{146}$Ba were populated following $\beta$-decay of $^{146}$Cs, with the goal of clarifying the development of deformation in Ba isotopes through delineation of their non-yrast structures. Fission fragments of $^{146}$Cs were extracted from a 1.7-Ci $^{252}$Cf source and mass-selected using the CARIBU facility. Low-energy ions were deposited at the center of a box of thin $\beta$ detectors, surrounded by a high-efficiency HPGe array. The new $^{146}$Ba decay scheme now contains 31 excited levels extending up to ~2.5 MeV excitation energy, double what was previously known. These data are compared to predictions from the Interacting Boson Approximation (IBA) model. It appears that the abrupt shape change found at N = 90 in Sm and Gd is much more gradual in Ba and Ce, due to an enhanced role of the $\gamma$ degree of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.